
 Calendar
The calendar metawidget provides a calendar that allows for selection of a date by using the mouse or the
keyboard. The user can scroll through the days and weeks by using the cursor keys, and through the month
and years with two arrow buttons and the control key. A double-click on the date display field sets the
current day.

Options
-controls top|bottom
-font font-spec

Commands
set ?date-string?
get ?format-string?
scroll integer ?days|months|years?
bind bind-arguments
headerconfig option-value pairs
Applies all option-value pairs to the calendar's headline, showing the weekdays. Accepts all options that can
be applied to a text widget tag.
headercget option

 Combobox
The combobox metawidget is a combination of an entry widget and a listbox.

Options
-lines integer
-entries arg arg ...
-state normal|disabled|restricted
-command command-string
Executes the specified command-string whenever a new value is picked from the list.

Commands
see ?index?

 Document
One windows in MDI application window.

Options
-title string
-image image-name
-icontext string
-x|-y|-width|-height pixels
-font font-spec
-foreground|-background color
-state normal|minimized|maximized|withdrawn
-minsize {width height}

Commands
menu options
Modifies the pull-down menu that pops up below the document window's icon, when clicked on the icon.
The options can be all option-value pairs that the standard menu widget accepts. This command allows to
add or disable entries to the menu.
lower|raise
pack|grid|place widget args
Arrange horizontally|vertically|cascade|tile|icons|maximize|minimize

 Gridcontrol
The gridcontrol metawidget is a rather complex widget and can be used to display data in rows and
columns, hence in table format. Columns are addressed by name, rows by number. Selection is supported
in the regular way. Cells and cell ranges can be tagged similar to text in a text widget. By configuring the
tags, cells can change their color, font etc. Columns can be resized with proper text clipping.
Some commands require to specify a cell or a cell range. This is done in the format column-name.row-
number. E.g. salary.4 specifies the cell in the fourth row of the salary column. Wildcard are also allowed:
lastname.* specifies all cells of the column lastname, *.12 all cells of row 12. Consequently, *.* identifies
the entire table.

Options
-font font-spec
-update full|partial|none Controls how a column is updated during a resize operation.
-selectmode single|multiple
-onselect command-string
If command-string is not empty, then it is evaluated each time the selection changes.

Commands
column insert|delete|configure|cget|fit|bind|names|exists ?args?
column insert column-name position ?options?
column delete column-name
column configure column-name ?options?

There are three special options:
-width pixels
-align left|right|center|numeric
-text string

Otherwise, all options are accepted that a text
widget tag would accept

column cget column-name option
column fit column-name
column bind column-name ?bind-args?
column names
column exists column-name

insert row-number ?value-list ...?
Inserts one or more rows, starting at the specified row number, and fill them up with values.

delete from-row ?to-row?
set cell-spec ?value-list ...?
get ?cell-spec1? ?cell-spec2?
tag add|delete|remove|cget|configure|lower|raise|ranges|names|bind ?args?
This command allows to apply and control tags for cells and cell ranges.
tag add tag-name cell-spec1 ?cell-spec2?
tag remove tag-name cell-spec1 ?cell-spec2?
tag names cell-spec
tag ranges tag-name
returns all cells that have the specified tag currently attached.
All other tag commands work exactly like the tag commands for the text widget. In particular, the selection
can be set by using the special tag "sel".
bind bind-arguments
see cell-spec
rows

Returns the total number of rows.

 Ibutton
The ibutton metawidget is just like a regular button, except it can have an image inside it.

Options
-image image-name
Specifies the image to be displayed.

 Iconbox
The iconbox metawidget acts as a container for icons. An icon consists of an image and a label and usually
represent some object (e.g. a file). Hence, attributes can also be displayed for each icon.

Options
-font font-spec Sets the font that is used for the label of the icons.
-update full|partial|none during a resize operation
-selectmode single|multiple
-onselect command-string
-view large|small|list
-columns column-spec-list
{ Caption ?alignment ?width ?minimal_width??? }
alignment: l (left), r (right), c (center) or n (numeric)
width and minimal is be specified in pixels.

Commands
insert position icon-name ?options?
position: integer, or "end"
delete ?icon-name ...?
If no icon names are given, then all icons are deleted.
iconconfigure icon-name option value ?option value ...?
-text string: The label to be used for the icon
-image image-name: The image to be used when in "large icons" view
-smallimage image-name: The image to be used when in "small icons" and list view
-values list: The attributes to be displayed when in list view
-user user-data: Arbitrary user data. Just stored with the icon but never used
All other options are applied to the icon's label (-font, -bg etc.).
iconcget icon-name option
iconbind icon-name bind-arguments
selection clear|get|set ?icon-names-list?
sort ?-column column-caption? ?lsort-options?
see icon-name
bind bind-arguments
size Returns the number of icons in the iconbox.
names Returns a list with the names of all icons in the iconbox.

 Listcontrol
Multicolumn listbox. Columns can be resized by dragging them. An icon can be placed into each column for
each row individually. Cells or cell ranges can be tagged similar like with the gridcontrol widget.

Options
-font font-spec individual rows can be controlled by tag
-update full|partial|none how a column is updated during a resize operation
-selectmode single|multiple
-onselect command-string

Commands
column insert|delete|configure|cget|fit|bind|names|exists ?args?
column insert column-name position ?options?
column configure column-name ?options?

-width pixels specifies the column's width
-align left|right|center|numeric controls the alignment of text inside the column
-text string specifies the column heading
-minsize pixels specifies the column's minimal width
Otherwise, all options are accepted that a text widget tag would accept.

column cget column-name
column fit column-name resizes a column to best width
column bind column-name ?bind-args? accepts arguments like the bind command
column names returns a list of all currently defined columns
column exists column-name returns 1 if a column exists, 0 otherwise.

insert row-number ?value-list ...?
delete from-row ?to-row?
set ?-columns column-list? start-row ?value-list ...?
get ?-columns column-list? first-row ?last-row?
tag add|delete|remove|cget|configure|lower|raise|ranges|names|bind ?args?
tag add tag-name cell-spec1 ?cell-spec2?
tag remove tag-name cell-spec1 ?cell-spec2?

tag names cell-spec
tag ranges tag-name

selection clear|get|set ?row-range ...?
image create|delete|configure|cget|names ?cell-spec? ?image-options?
Allows to attach an image to a particular cell or cell range. The image options must be those as accepted by
the image command of the text widget.
bind bind-arguments
see row
size
Returns the total number of rows.

 Pane
Container for two user-defined widgets.

Options
-orientation vertical|horizontal
-width pixels Sets the width of the draggable frame.
-resize both|first|second
-update boolean if the two user widgets shall be redrawn during dragging

Commands
set position ?both|first|second?
Sets the pane to a new position. If both (the default) is specified, position is taken as a percentage value
(e.g. set 50 would center the pane). Otherwise as a pixel value.
get ?both|first|second?
place|pack|grid first|second window-name ?args?
Places, packgs or grids a window either into the first (left, top) or second (right, bottom) part of the
container widget.

 Progressbar
The progressbar metawidget allows to visualize the progress of some process, e.g. the loading of a file or
processing of data. The default widget is the area behind the progress bar and is of type frame.

Options
-background color
-foreground color
-font font-spec
-format format-string
Defines the format to be used for the text display.

Commands
set value ?base-value?

 Scrollbox
The scrollbox metawidget is identical to a regular listbox, except it has a vertical and a horizonal scrollbar
attached that pop up only when they are needed. They allow to address entries in the listbox by their name
(i.e. the text that is displayed) rather than their index.

Options
-scrollbar auto|on|off

Commands
find entry ?entry ...?
selection setbyval|get|standard-options ?args?
Extents the standard listbox selection command by two functions:
set entry ?entry ...?
Deletes all existing entries and inserts new ones.
remove entry ?entry ...?
Removes particular entries from the list.
sort standard-lsort-args

 Spinentry
Entry widget with two arrow buttons on the right side

Options
-step value
-speed milliseconds
-minimum|-maximum value
-onerror cmd
Defines a script to be called when the value in the entry widget cannot be incremented respectively
decremented. If cmd is an empty string, then errors will not be caught.
-value value
Sets the value inside the entry widget. Also checks if the value is of numeric type. If not, an error is
returned.

 Statusbar
The statusbar metawidget sticks to the bottom of a window and displays some text.

Options
-ticks number Number of ticks on progress bar
-progress value The value must be between 0 and 1.
-state normal|withdrawn Shows or hides the status bar.
-text string Sets a text in the status bar.

Commands
push string set new bar text and save previous
pop return previous bar text
add field-name ?args?
delete field-name ?field-name ...?
itemconf field-name option value ?option value ...?
itemcget field-name option
Configures a field. Each field consists of a frame, an image and a text label. Consequently, all options are
accepted that these three widget types would accept.

 Tabcontrol
The tabcontrol metawidget is a container widget that contains a row of tabs at the top.

Options
-width auto|pixels|percent%

Commands
insert tab-name row ?args?
delete tab-name
tabconfigure tab-name option value ?option value ...?
Configures a tab. Each tab is actually a label, therefore all label options are accepted.
In addition there are two special options:
-window specifies the user widget to be displayed when the tab is active
-command specifies a script to be evaluated each time the tab is activated
tabcget tab-name option
invoke Activates a tab and shows its associated user widget.
get ?active|row?
If no arguments is specified, returns all tab names. If active is specified, returns the active tab. If a valid
row number is specified, returns the tabs in this row.
bind tab-name bind-arguments

 Textframe
The textframe metawidget is a regular frame widget with a title text

Options
-anchor n|s|w|e|c
-offset value
Sets an offset value for the title text. There are three different formats: E.g. 20% sets the label 20% of the
frame's width off from the left. 20 sets the label 20 pixel from the left border (good with -anchor w). end-20
sets it from the frame's right border (good with -anchor e).
-font font-spec
-text string

Commands
pack|place|grid window ?args?

 Toolbar
Toolbars contain a number of icons that represent entries from the application's menu.

Options
-side top|bottom|left|right
-state normal|fixed|withdrawn

Commands
add button|checkbutton|radiobutton|separator name ?args?
For the radiobutton type, there is one special option -group group-name
delete name ?name ...?
itemconf name option value ?option value ...?
Configures an item. Accepts all options that a button widget would accept. In particular, -image to set an
icon and -command to define an action are important here.
itemcget name option
invoke name ?new-state-boolean?
set name ?new-state?
Same as invoke except that the item's associated command is not called.
get name
Returns the state of a tool button as boolean. For regular buttons, always returns 0.
names ?pattern?

 Tooltip
Options
-delay milliseconds

Commands
add widget-name string
Activates the tooltip feature for a particular user-defined widget and defines the text to be displayed. The
text can be changed by calling this command again without having to call forget before.
forget widget-name
Removes the tooltip feature for a particular widget.

 Treecontrol
The treecontrol metawidget allows to built an Explorer-style tree with an arbitrary number of nodes.

Options
-text string
label of the root node.
-image image-name
Sets the image to be used for the root node.
-fullexpand boolean
Controls whether automatic expanding of all subnodes of a node shall be allowed, when the Shift key was
pressed by the user.
-selectmode single|multiple
-onexpand command
The command specified herein is evaluated whenever a node is being expanded and the children of that
node are not known yet, or the node is not defined as "final" (see nodeconfigure below).
-onselect command

Commands
insert node ?args?
delete ?node?
nodeconfigure node option value ?option value ...?
-parent node: Sets a new parent node. The node will be drawn as a child of that parent node. The tree's
root node is represented by an empty string.
-text string: Sets the nodes label.
-image image-name: Sets an icon for the node. Empty string, to removes the icon.
-final boolean: Tells the tree wigdet that the given node is complete.
-user string: Arbitrary user data. Just stored with the node but never used.
nodecget node option
-children returns a list of all child nodes.
-indention returns the current indention level of the node.
-expanded returns a boolean indicating if the node is currently expanded.
-tags returns a list of all tags currently associated with the node
-visible returns a boolean indicating if the node is visible, i.e. all of its parents are expanded. (The node
can still be not on the screen because the tree's viewport is somewhere else.)
nodebind node ?bind-arguments?
expand node ?recursive-flag?
collapse node ?recursive-flag?
move node ?-byname? ?-after? position
tag add|delete|remove|cget|configure|lower|raise|names|nodes|bind ?args?
selection clear|get|set ?node-names-list?
get from-row ?to-row? Returns a list of nodes that are between the two specified rows.
see node
bind bind-arguments
nodes Returns an unordered list of all nodes, whether visible or not.
tree node Returns the structure of the subtree as lis.

 Window
The window metawidget's purpose is to unify the window widget and the wm command. It is in so far not a
true metawidget, but it makes the handling of toplevel widgets easier.

Options
-geometry geometry-string
-minsize|-maxsize list
-resizable { allow-x allow-y }
-override boolean Controls if the window is ignored by the window manager.
-ondelete command
-title string
-state normal|iconic|withdrawn

Commands
resize width height
move x y
protocol wm-protocol-args

mkWidgets 1.3
http://mkextensions.sourceforge.net/

quickcard ver. 0.1 by michael.heca@email.cz

THE METAWIDGET COMMAND
metawidget create ClassName InitProc ExitProc ?-type WidgetType?

?-default WidgetName? ?-command CommandName? ?args?
This command creates a new metawidget class with the name ClassName.
metawidget proc ClassName ProcName Args Body
This command defines a procedure that is associated with a metawidget. The automatic variable $this
represents the current metawidget.
metawidget command ClassName CommandName ProcName
This defines a metawidget command and associates it with a metawidget procedure.
metawidget option ClassName OptionName ?SetProc? ?GetProc?
This defines a metawidget option.
metawidget delete ClassName
The delete subcommand deletes a metawidget class.
metawidget names
This simply returns all currently defined metawidgets.
metawidget info ClassName procs | commands | options
This returns the procedures, commands and options defined for the specified class.
metawidget export ClassName
The code as generated by the Metawidget package is returned.

SPECIAL COMMANDS
my WidgetVar ?NewValue?
Sets or retrieves a widget-variable.
unmy WidgetVar ?WidgetVar ...?
Unsets widget-variables.
myarray option WidgetArray ?args?
This command is just like the standard "array"
command, except that it applies to widget-arrays.
myinfo class
myinfo vars
myinfo exists Widget|Var
Either returns the metawidget's class name, or all
currently defined widget-variables, or a flag if the
specified WidgetVar exists.

our ClassVar ?NewValue?
Sets or retrieves a class-variable.
unour ClassVar ?ClassVar ...?
Unsets class-variables.
ourarray option ClassArray ?args?
This command is just like the standard "array"
command, except that it applies to class-arrays.
ourinfo vars
ourinfo exists ClassVar

TOOL COMMANDS
mkw.lassign List ?VarName ...?
Assigns all elements in List to the given VarNames from left to right.
mkw.lextend List ?Value ...?
If Value is not yet an element of List, Value is appended to the list and the extended list is returned.
Otherwise, the command simply returns List.
mkw.lshrink List ?Value ...?
If Value is an element of List, Value is deleted from the list and the reduced list is returned. Otherwise, the
command simply returns List.
mkw.lchange List OldValue NewValue
If OldValue is an element of List, OldValue is replaced by NewValue and the modified list is returned.
Otherwise, the command simply returns List.
mkw.decode Expr List ?DefaultValue?
This is similar to "string map", which is not available in Tcl 8.0.
mkw.complete Expr List
Expr is compared against each of the elements in List to find a match.
mkw.options List ?OptionSpec ...?
This is a simple option processing routine. options can have no arguments. OptionSpec is simply the name
of the option, e.g. -dictionary. For options with a value, an OptionSpec consists of two or three elements:
The first is the option name, the second either a list of allowed values or an asterisk * for any value. The
third element is optional and specifies a default value if the option is not found in List.
For each option found, a variable with the same name as the option is set in the calling procedure's context.

 Aclock
The aclock metawidget resembles an analog clock, with an hour and a minute pointer. The pointers can be
dragged with the mouse. The clock can also be set with two arrow buttons and a time entry field. A double-
click on the gray area between the buttons and the time entry field sets the current time.

Options
-controls top|bottom
-format format-string
Accepts a format string like for the standard clock format command.
-font font-spec

Commands
set ?time-string?
get
scroll minutes
Sets the clock's time forward or backward according to the specified minutes.
bind bind-arguments

